Cari Blog Ini

Cari Blog Ini

Cari Blog Ini

Senin, 05 November 2012


Sistem kelistrikan sepeda motor seperti; sistem starter, sistempengapian, sistem penerangan dan peralatan instrumen kelistrikan lainnya membutuhkan sumber listrik supaya sistem-sistem tersebut bisa berfungsi. Energi listrik yang dapat disuplai oleh baterai sebagai sumber listrik (bagi sepeda motor yang dilengkapi baterai) jumlahnya terbatas.
Sumber listrik dalam baterai tersebut akan habis jika terus menerus dipakai untuk menjalankan (mensuplai) sistem kelistrikan pada sepeda tersebut. Untuk mengatasi hal-hal tadi, maka pada sepeda motor dilengkapi dengan sistem pengisian (charging system).
Secara umum sistem pengisian berfungsi untuk menghasilkan energi listrik supaya bisa mengisi kembali dan mempertahankan kondisi energi listrik pada baterai tetap stabil. Disamping itu, sistem pengisian juga berfungsi untuk menyuplai energi listrik secara langsung ke system sistem kelistrikan, khususnya bagi sepeda motor yang menggunakan flywheel magneto (tidak dilengkapi dengan baterai). Bagi sebagian sepeda motor yang dilengkapi baterai juga masih ada sistem-sistem (seperti sistem lampu-lampu) yang langsung disuplai dari system pengisian tanpa lewat baterai terlebih dahulu.
Komponen utama sistem pengisian adalah generator atau alternator, rectifier (dioda), dan voltage regulator. Generator atau alternator berfungsi untuk menghasilkan energi listrik, rectifer untuk menyearahkan arus bolak-balik (AC) yang dihasilkan alternator menjadi arus searah (DC), dan voltage regulator berfungsi untuk mengatur tegangan yang disuplai ke lampu dan mengontrol arus pengisian ke baterai sesuai dengan kondisi baterai.






A.   Prinsip Kerja Generator
1.    Induksi Listrik
 






Gambar 1. Prinsip terjadinya Induksi listrik

Bila suatu kawat penghantar dililitkan pada inti besi, lalu didekatnya digerak-gerakkan sebuah magnet, maka akan timbul energy listrik pada kawat tersebut (jarum milivoltmeter bergerak). Timbulnya energi listrik tersebut hanya terjadi saat ujung magnet mendekati dan menjauhi inti besi. Induksi listrik terjadi bila magnet dalam keadaan bergerak. Saat ujung magnet mendekati inti besi, garis gaya magnet yang mempengaruhi inti besi akan menguat, dan sebaliknya. Perubahan kekuatan garis gaya magnet inilah yang menimbulkan induksi listrik.

2.   
Aplikasi Induksi Listrik





Gambar 2 Posisi kawat penghantar pada 0o
Pada gambar di atas, batang kawat dibentuk sedemikian rupa,ditopang oleh sebuah shaff (poros), dan pada ujung-ujungnya dilengkapi dengan cincin yang disebut komutator. Melalui komutator dan brush (sikat), dihubungkan seutas kabel. Kawat penghantar diletakkan di antara dua kutub magnet yang tarik menarik (kutub U dan S). Berdasarkan gambar di atas, kawat penghantar berada pada posisi terjauh dari magnet. Oleh karena itu, kawat penghantar belum mendapat pengaruh dari garis gaya magnet
 





Gambar 3. Posisi kawat penghantar pada 90°

Pada gambar 3. di atas, kawat penghantar melalui daerah dengan medan magnet terkuat karena berada pada posisi terdekat dengan magnet. Saat ini terbangkitkan energi listrik dengan tegangan tertinggi, yang membuat bola lampu menyala paling terang.
 





Gambar 4 Posisi kawat penghantar pada 180°

Pada gambar di atas, saat kawat penghantar telah mencapai posisi tegak kembali, kawat tidak mendapat pengaruh medan magnet karena kembali berada pada posisi terjauh dari magnet. Saat ini tidak terbangkit energi listrik di dalam kawat penghantar, dan lampu padam

3.    Persyaratan yang harus Dipenuhi Sistem Pengisian

Seperti telah disebutkan sebelumnya bahwa fungsi system pengisian secara umum adalah untuk menghasilkan energi listrik supaya bisa mengisi kembali dan mempertahankan kondisi energi listrik pada baterai tetap stabil. Disamping itu, sistem pengisian juga berfungsi untuk menyuplai energi listrik secara langsung ke sistem-sistem kelistrikan, khususnya bagi sepeda motor yang menggunakan flywheel magneto (tidak dilengkapi dengan baterai).
Berdasarkan fungsi di atas, maka sistem pengisian yang baik setidaknya memenuhi persyaratan berikut ini:
a. Sistem pengisian harus bisa mengisi (menyuplai) listrik dengan baik pada berbagai tingkat/kondisi putaran mesin.
b. Sistem pengisian harus mampu mengatur tegangan listrik yang dihasilkan agar jumkah tegangan yang diperlukan untuk system kelistrikan sepeda motor tidak berlebih (overcharging).

4.     Tipe Generator
Generator yang dipakai pada sistem pengisian sepeda motor dibedakan menjadi dua, yaitu generator arus searah (DC), dan generator arus bolak-balik (AC). Yang termasuk ke dalam generator AC antara lain; generator dengan flywheel magnet dan alternator AC 3 Phase.

a. Generator DC
Prinsip kerja dari generator DC sama dengan pada motor starter yang telah di bahas pada bagian motor starter. Dalam hal ini, jika diberikan arus listrik maka akan berfungsi sebagai motor dan jika diputar oleh gaya luar maka akan berfungsi menjadi generator.
Oleh karena itu, generator tipe ini sering juga disebut dynamo starter atau self starter dinamo.
Terdapat dua jenis kumparan dalam stator, yaitu seri field coil (terhubung dengan terminal relay starter) dan shunt field coil (terhubung dengan regulator sistem pengisian). Ilustrasi rangkaiannya adalah seperti terlihat pada gambar 5 di bawah ini :
Cara Kerja Sistem Pengisian Tipe Generator DC (Self Starter Dinamo)
Pada saat starter switch (saklar starter) dihubungkan, arus akan mengalir dari relay starter ke seri field coil terus ke armature coil dan berakhir ke massa. Motor akan berputar untuk memutarkan/menghidupkan mesin. Setelah mesin hidup, kontak pada relay starter diputuskan (starter switch tidak lagi ditekan), sehingga tidak ada lagi arus yang mengalir ke seri field coil
Akibatnya motor berubah fungsi menjadi generator karena armature coil saat ini menghasilkan arus listrik yang disalurkan ke regulator pengisian melewati shunt field coil









Gambar 5  Rangkaian sistem pengisian dengan tipe generator DC (dinamo starter)

Sistem pengisian dengan generator DC tidak secara luas digunakan pada sepeda motor karena tidak dapat menghasilkan gaya putar/engkol yang tinggi serta agak kurang efisien sebagai fungsi generatornya. Salah satu contoh yang menggunakan tipe ini adalah mesin dua langkah (yamaha RD200).
b. Generator AC
1) Generator dengan Flywheel Magnet (Flywheel Generator)
Generator dengan flywheel magnet sering disebut sebagai alternator sederhana yang banyak digunakan pada scooter dan sepeda motor kecil lainnya. Flywheel magnet terdiri dari stator dan flywheel rotor yang mempunyai magnet permanen. Stator diikatkan ke salah satu sisi crankcase (bak engkol). Dalam stator terdapat generating coils (kumparan pembangkit listrik).

Gambar 6 Contoh konstruksi flywheel generator


1. Komponen-komponen flywheel generator     2. Flywheel rotor
3. Komponen-komponen stator                             4. Stator plate (piringan stator)
5. Seperangkat contact breaker (platina)             6. Condenser (kapasitor)
7. Lighting coil (spool lampu)                                8. Ignition coil (koil pengapian)

Catatan : Pada gambar ini ignition coil termasuk bagian dari komponen stator. Pada mesin lainnya kemungkinan digunakan external coil, karenanya ignition coil dalam flywheel generator diganti dengan ignition source coil yang bentuknya hampir sama dengan lighting coil.

Terdapat beberapa tipe aplikasi/penerapan pada rangkaian sistem pengisian sepeda motor yang menggunakan generator AC dengan flywheel magnet ini, diantaranya;
a) Sepeda motor yang keseluruhan sistem kelistrikannya menggunakan arus AC sehingga tidak memerlukan rectifier untuk mengubah output pengisian menjadi arus DC.
b) Sepeda motor yang sebagian sistem kelistrikannya masih menggunakan arus AC (seperti headlight lamp/lampu kepala, tail light/lampu belakang, dan meter lamp) dan sebagian kelistrikan lainnya menggunakan arus DC (seperti horn/klakson, turn signal lamp/lampu sein). Rangkaian sistem pengisiannya sudah dilengkapi dengan rectifier dan regulator. Rectifier digunakan untuk mengubah sebagian output pengisian menjadi arus DC yang akan dialirkannya ke baterai. Regulator digunakan untuk mengatur tegangan dan arus AC yang menuju ke sistem penerangan dan tegangan dan arus DC yang menuju baterai.




 






Gambar. 7 Rangkaian sistem pengisian dengan generator AC yang dilengkapirectifier dan voltage Regulator
Berdasarkan gambar 7 di atas, regulator akan bekerja mengatur arus dan tegangan pengisian yang masuk ke baterai dan mengatur tegangan yang masuk ke lampu supaya mendekati tegangan yang konstan supaya lampu tidak cenderung berkedip. Pengaturan tegangan dan arus tersebut berdasarkan peran utama ZD (zener dioda) dan SCR (thyristor). Jika tegangan dalam sistem telah mencapai tegangan tembus (breakdown voltage) maka tegangan yang berlebih akan dialirkan ke massa. ZD yang dipasang umumnya mempunyai tegangan tembus sebesar 14V. Untuk lebih memahami cara kerja ZD dan SCR tersebut, perhatikan gambar 8 di bawah ini:
 










Gambar 8 Rangkaian sistem pengisian yang dilengkapi voltage regulator dan rectifier

Cara Kerja Sistem Pengisian Generator AC
Arus AC yang dihasilkan alternator disearahkan oleh rectifier dioda. Kemudian arus DC mengalir untuk mengisi baterai. Arus juga mengalir menuju voltage regulator jika saklar untuk penerangan (biasanya malam hari) dihubungkan. Pada kondisi siang hari, arus listrik yang dihasilkan lebih sedikit karena tidak semua kumparan (coil) pada alternator digunakan. Pada saat tegangan dalam baterai masih belum mencapai tegangan maksimum yang ditentukan, ZD masih belum aktif (off) sehingga SCR juga belum bekerja. Setelah tegangan yang dihasilkan sistem pengisian naik seiring dengan naiknya putaran mesin, dan telah mencapai tegangan tembus ZD, maka ZD akan bekerja dari arah kebalikan (katoda ke anoda) menuju gate pada SCR. Selanjutnya SCR akan bekerja mengalirkan arus ke massa. Saat ini proses pengisian ke baterai terhenti. Ketika tegangan baterai kembali menurun akibat konsumsi arus listrik oleh sistem kelistrikan (misalnya untuk penerangan) dan telah berada di bawah tegangan tembus ZD, maka ZD kembali bersifat sebagai dioda biasa. SCR akan menjadi off kembali sehingga tidak ada aliran arus yang di buang ke massa. Pengisian arus listrik ke baterai kembali seperti biasa. Begitu seterusnya proses tadi akan terus berulang sehingga pengisian baterai akan sesuai dengan yang dibutuhkan. Inilah yang dinamakan proses pengaturan tegangan pada sistem pengisian yang dilakukan oleh voltage regulator.
Alternator satu phase (single-phase alternator) merupakan alternator yang menghasilkan arus AC satu gelombang, masing-masing setengah siklus (180°) untuk gelombang positif dan negatifnya (gambar 9 bagian A). Jika disearahkan hanya dengan satu buah dioda, maka hanya akan menghasilkan setengah gelombang penuh (gambar 9 bagian B). Untuk itu pada rangkaian sistem pengisian yang menggunakan alternator, dipasangkan rectifier (dioda) setidaknya 4 buah untuk menyearahkan arus yang menuju baterai, sehingga bisa menghasilkan gelombang penuh pada sisi positifnya walau hanya menggunakan alternator satu phase (gambar 9  bagian C).
 



Gambar 9 Gelombang arus yang keluar dari alternator
 



Gambar 10  Sebuah dioda (A) dan empat buah dioda (B)

 





Gambar 11 Contoh tipe alternator 1 phase
2) Alternator AC 3 Phase
Perkembangan terakhir dari alternator yang digunakan pada sepeda motor adalah dengan merubah alternator dari satu phase menjadi 3 phase (3 gelombang). Alternator ini umumnya dipakai pada sepeda motor ukuran menengah dan besar yang sebagian besar telah menggunakan sistem starter listrik sebagai perlengkapan standarnya. Output (keluaran) listrik dari alternator membentuk gelombang yang saling menyusul, sehingga outputnya bisa lebih lembut dan stabil. Hal ini akan membuat output listriknya lebih tinggi dibanding alternator satu phase.
Salah satu tipe alternator 3 phase yaitu alternator tipe magnet permanen, yang terdiri dari magnet permanen, stator yang membentuk cincin dengan generating coils (kumparan pembangkit) disusun secara radial dibagian ujung luarnya, dan rotor dengan kutub magnetnya dilekatkan didalamnya. Tipe lainnya dari alternator 3 phase adalah yang menggunakan elektromagnet seperti alternator pada sepeda motor.






Gambar 12  Alternator 3 phase tipe Magnet permanen